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ABSTRACT 

The emittance of small c a v i t i e s  e l e c t r i c a l l y  dis integrated i n  tungsten and molybdenum is 
If proper measured with a disappearing-filament pyraneter. 

safeguards are  taken, c a v i t i e s  such as these a r e  r e l i a b l e  t a r g e t s  on which t o  s igh t  pyrometers 
when metal surface temperature is  desired.  
to ry  reproducibi l i ty .  The emittance r e s u l t s  a r e  compared with a n a l y t i c a l  expressions and the  
l a t t e r  a r e  shown t o  be of very l imited value except f o r  deep, isothermal cavi t ies .  

Cones and cyl inders  a r e  studied. 

The fabricat ion method yields  cavi t ies  of sa t i s fac-  

INTRODUCTION 

The performance of thermionic converters is strongly dependent on emit ter  temperature. An 
accurate determination of emitter surface temperature by o p t i c a l  pyrometry requires  a t a r g e t  of 
known emittance value. 
s t r a y  rad ia t ion  from other  hot sources and incident on the t a r g e t  i s  absorbed ra ther  than 
re f lec ted  in to  the pyrometer. 
l e s s  than 0.5; however, deep holes d r i l l e d  i n  any opaque mater ia l  can provide emittance values 
near unity.  Cavity design i s  a f a i r l y  simple task as long as t h e  mater ia l  is  isothermal; f r e -  
quently, however, t h i s  i s  not the case because refractory metals a r e  poor thermal conductors, 
p a r t i c u l a r l y  a t  elevated temperatures where large thermal flows of ten  e x i s t .  The r e s u l t i n g  
nonuniformity of temperature along the  walls introduces uncertainty i n t o  the  t a r g e t  emittance 
value and, hence, i n t o  the  surface temperature evaluation. Therefore, cavi ty  depth must be 
kept within cer ta in  bounds. 

The emittance, and hence the absorptance, must be near uni ty ,  so that 

Refractory metals yield surface emittancesL,z t h a t  a r e  usual ly  

Since the r e a r  walls of a cavi ty  usual ly  possess the la rges t  and most uniform emittance 
values,  this study is confined t o  pyrameter sightings that are  along or close t o  t h e  cavi ty  
ax is .  I n t e r e s t  is f u r t h e r  r e s t r i c t e d  t o  spectral  emission, since wide band (hea t )  detect ion 
apparatus is normally not selected for highly accurate temperature measurement of mall objects .  

Cavity emittance requires  a f u l l e r  description i f  confusion is t o  be avoided. By current  
convention, surface emittance 
surface t o  the rad ian t  energy emitted by a blackbody when both sources a re  a t  the  same tempera- 
tu re .  Cavity emittance eC is a similar r a t i o  for  an imaginary plane s t re tched across the  
opening of the cavi ty;  the energy beamed towards t h e  pyrometer i s  canposed of both emitted and 
r e f l e c t e d  l ight f r o m  the surface being viewed. 
energy streaming from the  w a l l  t o  the pyrometer is not uniform f r o m  one surface-area increment 
t o  the  next,  although the surfaces themselves may be isothermal. 
cav i ty  emittance ea, which has been expressed a n a l y t i c a l 1 9  for  cy l indr ica l  cav i t ies  possess- 
ing  d i f f u s e l y  (Lambert) emitt ing and r e f l e c t i n g  surfaces. 
y ie ld  an  overa l l  cavi ty  emittance 

E is  t h e  r a t i o  of the  radiant  energy emitted by an a r b i t r a r y  

For other than r e l a t i v e l y  deep cavi t ies ,  the 

This gives r i s e  t o  a l o c a l  

Most a n a l y t i c a l  approaches4,5,6,7 
E ~ .  

While i n t e r e s t  here is confined t o  viewing along or  close t o  the  cavi ty  ax is ,  the direc-  
t i o n a l  r a d i a t i o n  charac te r i s t ics  of the  surface i t s e l f  can have a pronounced e f f e c t  on the  
value of cavi ty  emittance. 4 ~ 5  
consider the surfaces t o  be perfect  diffusers .  
of severa l  a n a l y t i c a l  methods t h a t  are  popular. 
a reviewg of the various general  methods t h a t  have been employed f o r  deriving equations f o r  
cavi ty  emittance. 
good fit t o  t h e i r  experimental data ,  which were confined t o  length-to-diameter r a t i o s  of 0.25 
t o  1.0. 
being t h e i r  concern f o r  d i f fuse ly  r e f l e c t i n g  walls. 

However, nearly a l l  a n a l y t i c a l  expressions f o r  cavi ty  emittance 

More recent ly ,  Kelly and Moore have presented 

For c y l i n d r i c a l  cav i t ies ,  they show severa l  expressions3~7 t h a t  provide a 

W i l l i a m s e  describes the  meri ts  and weaknesses 

The purpose of t h e i r  work was similar  t o  the present paper, the s ign i f icant  difference 



The aforementioned information is  he lpfu l ,  but it provides quant i ta t ive  values of  ea and 
cC f o r  spec ia l  cases only. 
t he  experimental r e s u l t s  obtairled from e l e c t r i c a l l y  d is in tegra ted  cav i t i e s  i n  tungsten and 
molybdenum. 

Herein, severa l  of the  ana ly t i ca l  formulations a r e  compared with 

DESIGN CONCEPTS 

following fea tures  a re  des i rab le  fo r  a cav i ty  d r i l l e d  i n t o  a surface so t h a t  i t s  %em- 
can be measured by pyrometry: 

Target-area emittance near un i ty  
Isothermal walls 
Target area of uniform radiance 
Target area of ample s i ze  
Emittance constant with time 
Reproducible i n  manufacture 

The aforementioned items a r e  i n  many ways contradictory.  
i s  f r e e l y  r ad ia t ing  t o  space and heat flow within the  metal is  unid i rec t iona l ,  temperature 
gradients ranging from ZOO t o  80' C/cm can occur. 
surface; the four-fold range i n  values i s , r e l a t e d  t o  t h e  surface roughness and, hence, t o t a l  
emittance. 
present.  
small; however, if the t a r g e t  diameter ( f i g .  1) is  too  small, accurate pyrometer s igh t ings  
cannot be obtained. 

If the  surface containing t h e  cavi ty  

These f igu res  a r e  f o r  a 20W0 K tungsten 

Gradients can be l a rge r  o r  smaller when mass t r anspor t  (e. g., e lec t ron  cooling) i s  
I n  order t o  concurrently s a t i s f y  items (l), (2), and ( 3 ) ,  t h e  cavi ty  entrance m u s t  be 

The d r i l l i n g  process produces two separate e f f e c t s :  t h e  surface i s  roughened, and the  
ma te r i a l  is subjected t o  l a t t i c e  d i s to r t ions .  Bennettg shows that both have a pronounced e f -  
f e c t  on the magnitude of surface emittance and on t h e  specular i ty  of t h e  r e f l ec t ed  r ad ia t ion .  
With proper annealing t h e  r ad ia t ion  cha rac t e r i s t i c s  of t he  surfaces undergo change and f i n a l l y  
become f a i r l y  stable.  

Cavities must be reproducible i n  manufacture i f  cC 
general  u t i l i t y .  Reproducibil i ty requi res  t h a t  to le rances  of t h e  gross-cavity dimensions a r e  
s m a l l  and t h a t  surface roughness and damage do not vary from one surface element t o  t h e  next. 

da t a  f o r  a given cav i ty  a re  t o  be of 

APPARATUS 

Holes were d r i l l e d  i n t o  the  ends of 3/8-inch-diameter tungsten and molybdenum rods 
( f ig s .  2, 3, and 4) .  
lower. 
and cavi ty  temperature readings w re obtained with a disappearing-filament pyrometer having an 
e f f ec t ive  wavelength h of 6530 !. The view was along the  cav i ty  ax i s  and t h o u g h  a window 
t h a t  had a remotely operated shu t t e r  which kept contaminants from reaching t h e  window. M u l t i -  
p le  r e f l ec t ions  between window and rod end were minimized by loca t ing  t h e  window normal 
s l i g h t l y  off-angle t o  t h e  ax i s  of t he  rod ( f i g .  3) .  
near ly  a l l  s t r a y  r ad ia t ion  by chamber walls and induction c o i l .  

Each rod was induction-heated i n  a vacuum environment of t o r r  O r  

The e n t i r e  polished rod end containing t h e  c a v i t i e s  r ad ia t ed  t o  "space." FrOnt-SurfaCe 

Care was taken t o  ensure the  capture of 

Dr i l l ing  by e l e c t r i c a l  d i s in t eg ra t ion  yielded holes  of near ly  uniform sur face  teXture f o r  
a l l  surfaces. 
i t s  neighbors. RoughnPss depth w a s  about 0.001 cm. 
s t en  a r e  shown along with dimensions i n  f igu re  4. The c a v i t i e s  were out-of-round by approxi- 
mately 0.002 cm. 
corners of the cylinders. 
d r i l l i n g  process were required t o  a t t a i n  these to le rances .  

The d r i l l i n g  technique produced shallow pocks with t h e  rim of each pock touching 
The cones and cy l inders  fabr ica ted  i n  tung- 

The rad ius  of curvature was about 0.005 cm f o r  t he  cone apexes and f o r  t h e  
Frequent dress ing  and replacement of t h e  e lec t rodes  used i n  the  

The pyrometer was a manually operated and commercially ava i l ab le  instrument. Temperature 
readings when viewing la rge  uniformly br ight  t a r g e t s  contained e r r o r s  of approximately 5 de- 
grees. Reproducibility of brightness matches w a s  about 2 degrees for l a rge  t a r g e t s .  Unpub- 
l ished work a t  t h i s  laboratory has shown t h a t  e r r o r s  i n  measurement can be an t i c ipa t ed  when t h e  
tar@ diameter becomes smaller than f i v e  times t h e  filament diameter. To achieve t h i s  minimum 
er ror - f ree  t a rge t  diameter 
e t e r  

W a t  t h e  bottom-center of a cy l ind r i ca l  cav i ty ,  t he  cav i ty  diam- 
D must be su f f i c i en t ly  la rge  so t h a t  outermost r ays  emanating from t h e  t a r g e t  and i n c i -  

. 



3 

e 

n 
I 

I W  

* 

dent on the  pyrometer entrance a r e  not blocked by the  cavi ty  l i p  ( f ig .  1). 
diameter r a t i o  of 6 and a distance d of 40 cm, D must be 25 percent l a rge r  than W for  the  
subject pyrometer. 

For a length-to- 

PROCEDURE 

Computation of cavi ty  emittance eC assumes t h a t  t he  normal emittance el of t he  
polished face  of t h e  rod is  known.1° 
be obtained from t h e  Wien equation 

The t r u e  temperature T of t he  f ron t  face of t he  rod can 

where %,1 is  the  pyrometer-indicated temperature of t he  surface and T is  t h e  window t r ans -  
mission. Likewise, t he  t r u e  temperature of t h e  front-face of t h e  rod is  

where S, 2 is  the  pyrometer-indicated temperature of t he  cav i ty  after subs t rac t ion  of A!?, 
t he  e s t d t e d  temperature difference between the  backwall of cavi ty  and t h e  f ront - face  of t h e  
rod. Wherever d i f fe rences  i n  t h e  emittance of various surfaces of a given cavi ty  were being 
examined, cC of equation ( 2 )  was replaced by ca, t h e  l o c a l  cav i ty  emittance. 

1 
T Equating t h e  two expressions for - yie lds  

RESULTS AND DISCUSSION 

The estimated temperature difference between f ron t  and back surfaces of the  c a v i t i e s  
ranged between 0 and 15 degrees. 
c a v i t i e s  f o r  tungsten operated near 2200' K. 
sponds t o  a change of about 0.06 

The l a rges t  values were associzted with the  l a rge  conica l  
A t  t h i s  temperature, a M of 15 degrees corre- 

un i t s  (eq. ( 3 ) ) .  

A f a i r l y  deep cy l ind r i ca l  cav i ty  ( f ig .  4, hole 14) ws fuund t o  be of uniform brightness 
across  t h e  back surface. Such a t a r g e t  should provide measured eC values independent of d i s -  
tance and observer; therefore ,  hole 14 was used t o  e s t ab l i sh  t h e  reproducib i l i ty  and accuracy 
of the  data. Figure 5 shows the  r e s u l t s  of numerous readings by each of two observers. 
Reproducibil i ty of each observer de te r iora tes  badly when the  cavity-to-filament-diameter r a t i o  
becomes smaller than 3.2. values obtained by t h e  two observers are shown t o  de- 
crease when t h e  pyrometer i s  placed too  fax f r m  t h e  cavity. Both observations conform t o  the  
remarks about minimum permissible t a r g e t  diameter made i n  the  APPARATUS sec t ion  of t h i s  report .  
Accuracy l a rge ly  depends on reproducib i l i ty  of readings, observer judgnent , pyrometer ca l ibra-  
t i o n  e r r o r ,  and uncer ta in ty  i n  emittance of the f ront  face  (€1 

Also, t he  cC 

of eq. ( 3 ) ) .  

The annealing (aging) process produced in te res t ing  developnents. Whisker growth occurred 
on t h e  cav i ty  surfaces during the  i n i t i a l  heat of t he  molybdenum rod. The growth was rapid,  
occurred below 1400° K, and resu l ted  i n  a very marked lowering of cavi ty  emittance. The rod 
w a s  removed, cleaned by gentle scraping, and returned t o  the  vacuum vessel.  
ing, whiskers did not develop. 
cannot always be r ead i ly  detected. 

On further heat-  
Whisker diameter was only about 0.001 cm; hence, t h i s  nuisance 

Enittance data were obtained f o r  molybdenum c a v i t i e s  during t h e  annealing process. While 
t h e  temperature underwent numerous cycles, one heat of 2000' K was maintained f o r  a day. 
cy l ind r i ca l  hole had the  same dimensions as the tungsten cavi ty  used f o r  f igure  5; the other 
two c a v i t i e s  were a l s o  of 0.04 cm diameter, but they  had length-to-diameter values of 3.74 and 
2.95, respec t ive ly .  
As aging progressed, t h e  surface s t ruc ture  of the shallowest cav i ty  could be observed through 
t h e  pyrometer optics.  
measurements were very d i f f i c u l t  t o  obtain. The intermediate hole underwent t h e  same process, 

One 

I n i t i a l l y ,  t he  back wall of each hole appeared t o  be of uniform brightness. 

The a rea  of uniformly bright surface became so small t h a t  temperature 
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but t h e  e f f ec t  w a s  smaller. By t h e  time a s tab le  or near-stable surface condition was attained, 
t h e  bottom of the deepest hole had l o s t  a l i t t l e  of i ts  uniformity; however, temperature read- 
ings had accuracies comparable t o  those f o r  t h e  tungsten cavity. This la t ter  molybdenum cavi ty  
(L/D, 4.85) provided a cavi ty  emittance eC of 0.946 a t  temperatures from 1300' t o  2200' K. 

On removal from the  vacuum vesse l ,  t he  molybdenum cavi ty  surfaces were found t o  be shiny. 
These surfaces had o r ig ina l ly  appeared lu s t e r l e s s .  
more l o c a l  sca le  t h e  surfaces appeared t o  be very smooth when viewed with a microscope. 
ilar but less  noticeable e f f ec t  was observed f o r  tungsten, which was aged a t  about 2350' K for 
a day. 
molybdenum rod.Fl,12 However, changes of tungsten values eC with time were not observed for 
t h e  considerable number of hours required t o  obta in  t h e  data presented herein. 
ened area (no. 15 of f i g .  3)  yielded a surface emittance of 0.5. 
d is in tegra ted  molybdenum surface,  e was near 0.4. 

The pock marks were s t i l l  present,  but on a 
A S b -  

The t u n  s t en  rod may not have been as thoroughly annealed and cleaned by hea t ing  as t h e  

The aged rough- 
For an aged, e l e c t r i c a l l y  

The la rge ly  specular behavior of t h e  r e f l ec t ions  observed for flat, e l e c t r i c a l l y  d i s in t e -  
grated surfaces implies that experimental 
ies based on d i f fuse ly  r e f l e c t i n g  surfaces.  On t h e  basis that eC equals cavi ty  absorptance 
ac, t h e  r e f l ec t ion  behavior of t h e  m e t a l  surface i t s e l f  can be i l l u s t r a t e d  by example. 
beam of f i n i t e  cross-sectional a r ea  t r ave l ing  p a r a l l e l  t o  t he  axis and i n t o  a conical cav i ty  
s t r i k e s  a wall and i s  p a r t i a l l y  absorbed. 
i s  re f lec ted  fu r the r  i n t o  t h e  cav i ty  when t h e  t o t a l  cone angle i s  l e s s  t h n  90'. 
face  been a d i f fuse  r e f l ec to r ,  a por t ion  of t he  l i g h t ,  on i t s  f irst  contact with the  wall, 
would have been r e f l ec t ed  out of t h e  cav i ty  entrance. In  the  case of a cy l ind r i ca l  cavity,  a 
specular ly  r e f l e c t i n g  end-disk-surface r e f l e c t s  a x i a l l y  incident l i g h t  back along the  p t h  it 
entered. Cavity e f f e c t  is  minimal. 

cC da ta  w i l l  cor re la te  poorly with ana ly t i ca l  stud- 

A l i g h t  

For a pe r fec t ly  specular surface the  remaining l i g h t  
Had t h e  sur- 

As  expected from the  preceding discussion, t h e  experimental data for cones co r re l a t e  
poorly with ana ly t i ca l  r e su l t s6  based on d i f fuse  surfaces ( f i g .  6 ) .  
possible area f o r  a fi lament-target brightness match, one des i r e s  t o  s igh t  t h e  pyrometer on the  
center of the cavity.  This presents  problems i n  t h e  case of cones because of t h e  d i f f i c u l t y  i n  
f ab r i ca t ing  a pointed bottam. 
a reas  of reduced brightness a t  and near t he  apex. 
a brightness match. 
t h e  inner periphery of t he  cone. 
c a l l y  d is in tegra ted  tungsten, f ab r i ca t ion  of small deep cones requi res  considerable s k i l l .  

data are compared with an  ana ly t i ca l  expression by Sparrow e t  al .3 f o r  pe r fec t  d i f fuse r s .  
a given value of L/D, t h e  ana ly t i ca l  expression y i e lds  
center and l a rges t  near t h e  periphery. 
mental da ta  l i e  below the  ana ly t i ca l  values. 
t i o n  of t he  tungsten surfaces.  Figure 7 a l s o  shows t h e  change of measured emittance as t h e  
r a t i o  of cavity diameter t o  fi lament diameter is varied.  Since these  cav i t i e s  are of the  same 
diameter, a dua l  absc issa  i s  provided on the  f igu re .  The deepest cav i ty  (L/D, 3.1) exh ib i t s  a 
uniformly bright t a rge t  area and measured emittance is independent of distance and observer. 
These r e s u l t s  compare favorably with those of f igure  5 f o r  cavity-to-fi lament diameter r a t i o s  
of 3.2 and la rger .  A t  length-to-diameter values less than  3, br ightness  nonuniformity of t h e  
end d isk  was e a s i l y  detected; however, at  s m a l l  values of d t h e  minimum e r ro r - f r ee  t a r g e t  
diameter W included only a s m a l l  f r a c t i o n  of a rea  a t  t h e  center  of t h e  disk.  This a rea  w a s  
of near ly  uniform brightness,  hence t h e  eC values a t  small values of d were independent of 
distance d. A s  d was gradually increased from a value of 50 cm, br ightness  matching became 
progressively more d i f f i c u l t  because the  outer region of t he  minimum e r ro r - f r ee  t a r g e t  a rea  be- 
came brighter.  
These r e s u l t s  show t h a t  brightness nonuniformity of t h e  end d isk  is objectionably la rge  f o r  
these  shallow cav i t i e s .  

To u t i l i z e  t h e  l a r g e s t  

Cones having a cone angle l a rge r  t han  30° were observed t o  have 
This a rea  had t o  be avoided when conducting 

Furthermore, these  two cones produced a low-intensity annular surface on 
While a cone angle of l e s s  t han  25' i s  prefer red  f o r  e l e c t r i -  

Local cav i ty  emittance da t a  f o r  tungsten cylinders a r e  shown on f igu re  7. Experimental 
For 

values t h a t  a r e  smallest  near t he  ea 
For any given length-to-diameter r a t i o ,  a l l  t h e  experi-  

This i s  explained by t h e  specu la r i ty  of r e f l ec -  

The r e su l t i ng  measured emittance increases  and t h e  r ep roduc ib i l i t y  decreases. 

Experimental values of loca l  cav i ty  emittance obtained for t h e  center  of the  end-disk are 
summarized in  f igu re  8. The values a r e  f o r  a t a r g e t  diameter W t h a t  is  small campared 
t o  the  cylinder diameter I). Results by D. F. E d ~ a r d s , ~  using t h e  &v0s4 ana lys is  f o r  a non- 
d i f fuse  surface, a r e  included. These ana ly t i ca l  results a r e  suspect a t  low values of length- 
to-diameter r a t i o  where the  experimental data show t h e  end disk t o  be of nonuniform brightness.  
Also, t h e  DeVos canputations a re  Only f o r  a surface emittance of 0.4; however, fou r  d i f f e r -  
e n t  surfaces were examined. One was a per fec t  d i f f u s e r ,  and t h e  o ther  t h ree  sur faces  had  vary- 
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i ng  f r ac t ions  of t he  r e f l ec t ed  energy d i s t r ibu ted  between d i f fuse  and per fec t ly  specular modes. 
The 
of Sparrow, e t  al. ( f i g .  8 )  t h a t  they a re  not shown. 
sen ts  a surface somewhat less specularly r e f l ec t ing  than  a highly polished re f rac tory  m e t a l  sur- 
face.  The molybodenum and tungsten da ta  a re  s e l f  cons is ten t  and both a r e  shown t o  co r re l a t e  
well  with t h e  DeVos surface; it must be s t ressed ,  however, t h a t  t h e  properties of t h e  referenced 
surface are very a rb i t r a ry .  (The most highly polished DeVos surface yielded much lower 
values than those shown here.) 

values f o r  a per fec t  d i f fuse r  i s  i n  such c lose  agreement with d i f fuse  surface r e s u l t s  
The DeVos curve shown i n  f igure  8 repre- 

Data obtained f r o m  all t h e  cav i t i e s  of f igure  4 conformed t o  the  experimental r e s u l t s  t h a t  
have been discussed. Reproducibil i ty of fabr ica t ion  of these  s m a l l  c av i t i e s  appears s a t i s f ac -  
t o ry .  

CONCLUDING REMARKS 

Small cones and cy l inders  e l e c t r i c a l l y  d is in tegra ted  i n  re f rac tory  metals provide satis- 

a r e  of l i t t l e  value (except f o r  nearly b lack  c a v i t i e s )  
fac tory  t a r g e t s  on which t o  s igh t  pyrometers i f  the  c a v i t i e s  a re  selected with considerable 
care.  Analytical  expressions for 
unless t h e  d i r ec t iona l  d i s t r ibu t ion  of t h e  re f lec ted  energy i s  known. 
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